I can use graphs to show the connections between displacement, velocity, and time. **325-2**

Graphing Uniform Motion

What are some things we can take away

from what we just saw?

- What variable is on the x-axis?
- What variable is on the y-axis?
- What do you think the slope (line) represents?

"Mom, what appears over our heads when we have an idea?"

- What is happening when the slope is flat? increasing? decreasing?
- When can we get negative displacement?

Plotting Uniform Motion

Let's examine the following table

Time (s)	Displacement (m) [N]
0	0
1.0	12
2.0	24
3.0	36
4.0	48
5.0	60
6.0	72

a) What is the average velocity for this event? $(V_{av}?)$

b) What do you notice about the distances as time increases?

- c) What is the slope of our graph?
- d) What can you conclude about the slope of a displacement-time graph?

Example:

The graph below shows a position-time graph for a short car trip. Find the velocity of the car for each segment of the trip.

$$A \longrightarrow B : \quad \overrightarrow{V}_{av} = \frac{\Delta \overrightarrow{d}}{\Delta t} = \frac{d_f - d_i}{t_f - t_i}$$

B**→**C:

C→D:

D→E:

E→F:

Velocity-Time Graphs

We can graph velocitytime graphs the same way we do displacementtime graphs.

What are some things we can take away

from what we just saw?

- What variable is on the x-axis?
- What variable is on the y-axis?
- What do you think the slope (line) represents?

"Mom, what appears over our heads when we have an idea?"

- What is happening when the slope is flat? increasing? decreasing?
- When can we get negative velocity?

Example:

Use the tables to graph a velocity-time graph. Both lines can be drawn on one graph.

Line 1

	velocity
time (s)	(m/s)
	[N]
0.0	0
1.0	6
2.0	12
3.0	18
4.0	24
5.0	30

Line 2

	velocity
time (s)	(m/s)
	[N]
0.0	20
1.0	16
2.0	12
3.0	8
4.0	4
5.0	0

A positive slope indicates an object speeding up and a negative slope indicates an object slowing down.

Finding Area on a Speed-Time Graph

We can find the distance covered on a speed-time graph by looking at the area under the line.

Taking a look at our example earlier from the first table.

- The slope of a displacement-time graph is velocity.

- The area under the line gives the displacement in a velocity-time graph.

