Graphing Uniform Motion

Graphing

- 1. Find the *average velocities* from the graph to the side of this question
 - a. Between t = 10.0 and 12.0 s
 - b. Between t = 14.0 and 18.0 s
 - c. Between t = 20.0 and 24.0 s
 - d. Between t = 26.0 and 30.0 s
- 2. Use the figure to the right to find the sprinter's *velocity* at 2.0 s.
- **3.** Using the table of values below, plot a *displacement-time* graph representing the data.

Displacement (m) [E]	Time (s)	
0.0	0.0	
10	1.0	
20	2.0	
20	3.0	
10	4.0	
0	5.0	

- 4. From your graph in question 3, calculate the value of the *slope* of each time interval. What does this tell you?
- 5. A car moves along a straight road at a constant velocity of +75 km/h for 4.0 h, stops for 2.0 h, and then drives in the reverse direction at the original speed for 3.0 h.
 - a. Plot a *velocity-time graph* for the car.
 - b. Find the *area under the curve* for the first 4.0 h. What does this represent?
 - c. Explain how to use the graph to find the distance the car is from its starting point at the end of the 9.0 h.

<u>Theory</u>

- 1. Answer the following questions briefly for each situation.
 - a. What variable goes on the y-axis in a displacement-time graph?
 - b. What does the slope tell you in a displacement-time graph?
 - c. What does the slope tell you in a velocity-time graph?
 - d. How can we calculate distance from a velocity-time graph?
- 2. Sketch *position-time graphs* for these four motions:
 - a. Starting at a positive position with a positive velocity.
 - b. Starting at a negative position with a smaller positive velocity.
 - c. Remaining at a negative position.
 - d. Starting at a positive position with a negative velocity.
- 3. Sketch a *velocity-time graphs* for lines, A, B, and C from the graphs shown below.

<u>Practice</u> (Remember to be as accurate as possible)

Question: How does average speed change as a ramp incline changes? Is there an incline where the ramp will cause the average speed to decrease? If so, what degree do you think will happen?

Hypothesis:

Materials: (Make a list of materials used in this experiment)

Procedure:

- 1. Get the necessary materials for the experiment.
- 2. Have one or more group members set up the ramp and measure the incline.
- 3. Record the degree of the incline on the data table.
- 4. Mark 1.00 meter from the bottom of the ramp to a 'finish line'
- 5. Place the ball at the top of the ramp and mark with a piece of tape where the ball is to be released.
- 6. Release the ball but only start recording the time when it touches the ground.
- 7. Record the time it takes the cart to travel the 1.00 meter.
- 8. Calculate the average speed of the ball.
- 9. Do 2 trial runs of each angle and take an average time. Record this answer in the chart.
- 10. Repeat steps 2-9 until you have 7 successful degree measurements. Each trial should be at least 5-10 degrees away from other degree measurements.

Trial	Degree (°)	Distance (m)	Time (s)	Speed (m/s)
1				
2				
3				
4				
5				
6				
7				

Data Table: (Note: place degrees in increasing order on the data table)

Graphing: On a separate sheet of graph paper, make a distance time graph. Draw and label the trial runs from the data table on your graph. In the end you will have 7 different lines on one graph. Staple it to the back of this sheet when it is ready to be handed in.

Conclusion: What can you analyze from your data table in regards to the speed of the ball based on the incline of the ramp? What your hypothesis correct? Explain.