\qquad
Objective: In this lab you will need to measure precisely to calculate densities of various objects.

Materials: Density blocks, cylinders, ruler, weight scale (400g), paper, pencils, calculator

Procedure: To measure density, two pieces of information are needed: mass and volume. Two find the mass, use a weight scale and record the information given (in grams). Use a ruler to find the volume by measuring the sides/diameter/height or other lengths as needed. Divide the mass by the height to find the density.

Calculations:

Station A (cubes): Fill in the table below

Object	Length of 1 side (cm)	Volume (cm^{3})	Mass (g)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
1				
2				
3				
4				
5				
6				
7				
8				
9				

Station B (blocks of different sizes): Fill in the table below

Object	Length (cm)	Width (cm)	Heighth (cm)	Volume $\left(\mathrm{cm}^{3}\right)$	Mass (g)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
1						
2						
3						
4						
5						
6						
7						
8						

Analysis: Answer the following questions

Station A:

1. Because the sizes of the cubes are all relatively the same, what would be an easy way to check which block would have the greatest density?

Station B:

2. Using the chart to the side, classify each of the cylinders to find out which ones are which. (not all of them will be used)

Object 1 \qquad
Object 2: \qquad
Object 3: \qquad
Object 4: \qquad
Object 5: \qquad
Object 6: \qquad
Object 7: \qquad
Object 8: \qquad
Object 9: \qquad
Object 10: \qquad

Material	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Copper	$9.1-10.2$
Brass	$8.0-9.0$
Glass	$2.8-3.1$
Rubber	$3.5-3.8$
Acrylic	$1.12-1.3$
Tecaform	$0.91-1.1$
Aluminum	$2.59-2.8$
Delrin (white)	1.36
PVC (gray)	1.46
Teflon	2.06
Poplar Wood	$0.35-0.59$
Oak Wood	$0.60-0.90$

Conclusion: Write a couple of sentences describing the properties that can affect density. From your experience, what are some items that have a high density? What about a low density?
\qquad
\qquad
\qquad
\qquad

