Specific Heat and Calorimetry 2

The formula $q=m C \Delta T$ measures energy associated with temperature changes.

Example:
How much energy would it take to heat 2.50 kg of water from $5.0^{\circ} \mathrm{C}$ to $85.5^{\circ} \mathrm{C}$?

Example 2:

If a 25.0 L tank of water at $21.5^{\circ} \mathrm{C}$ were heated with $3.2 \times 10^{3} \mathrm{~kJ}$ of energy, what would the final temperature of the water be?

Assuming a closed system (no energy lost to the surroundings), any energy lost by the system must be gained by the surroundings and visa versa. In other words...

$$
\begin{gathered}
q_{s y s}=-q_{\text {sur }} \\
\text { or } \\
-q_{\text {sys }}=q_{\text {sur }}
\end{gathered}
$$

For example, if something hot (like a piece of metal) is placed in something cooler (like water), the energy gained by the water will have to equal the energy lost by the metal.
energy lost by system = energy gained by surroundings

$$
-q_{\text {metal }}=q_{\text {water }}
$$

Example 3a:
How much energy would be lost if a 25.0 g piece of iron at $85.0^{\circ} \mathrm{C}$ were cooled by water to a final temperature of $22.2{ }^{\circ} \mathrm{C}$?

Example 3b:

What mass of water at $20.0{ }^{\circ} \mathrm{C}$ would be needed to cool the iron to that same final temperature that the two substances arrive at?

$$
-q_{\text {metal }}=q_{\text {water }}
$$

Example 3c:

Determine the final temperature when a 25.0 g piece of iron at $85.0^{\circ} \mathrm{C}$ is placed into 75.0 g of water at $20.0^{\circ} \mathrm{C}$.
energy gained by water = energy lost by iron

Problems that involve a temperature gain causing a temperature loss are known as " $q=q$ " problems

Specific Heat and Calorimetry \#1 $q=q$ Problems

