Specific Heat and Calorimetry (cont) In another type of calorimetry calculations, a chemical reaction can provide energy to change the temperature of another substance. Molar enthalpy is defined as the amount of energy absorbed (or released) per 1 mol of that substance. ## Practice problems with molar mass Suppose you need 3.00 mol of sodium chloride (NaCl) for a laboratory experiment. How much mass should be measured? **Specific Heat and Calorimetry 2 (Part 2)** Aluminum oxide helps prevent corrosion when applied to surfaces. What is the mass of 9.45 mol of aluminum oxide? Specific Heat and Calorimetry 2 (Part 2) Mole-Mass Worksheet ΔH_x = nH_x measures energy associated with bonds/forces holding particles together. 'x' stands for the type of energy being changed. 'n' is the amount of substance undergoing the change. Some common examples are ΔH_c (combustion) ΔH_{vap} (vapor) ΔH_{fus} (fusion) ΔH_{cond} (condensation) ## Example 4 How much energy (in kJ) would be released by the burning of 250.0g of propane? ($H_{c(propane)} = -2217 \text{ kJ/mol}$) ## Example 5 What mass of propane would need to be burned to provide 4.580×10^4 kJ of energy? [molar enthalpy of combustion of propane is -2217 kJ/mol] Specific Heat and Calorimetry 2 (Part 2) Specific Heat and Calorimetry $\Delta H_x = nH_x$ Problems #2