Specific Heat and Calorimetry (cont.)

If a chemical reaction causes a temperature loss, then $q=\Delta H_{x}$

Example 6:

What mass of propane would need to be burned to change the temperature of 500.0 g of water from $17.0^{\circ} \mathrm{C}$ to $95.5^{\circ} \mathrm{C}$?
[The molar enthalpy of combustion $\left(\mathrm{H}_{\mathrm{c}}\right)$ of propane $=-2240 \mathrm{~kJ} / \mathrm{mol}]$
energy gained by water = energy lost by propane

$$
q_{\text {water }}=\Delta H_{c(\text { propane })}
$$

amount of substance undergoing the change

Example 7

Some ammonium nitrate is stirred into $2.50 \times 10^{2} \mathrm{~mL}$ of water, and the temperature drops from $22.7^{\circ} \mathrm{C}$ to $10.1^{\circ} \mathrm{C}$. The molar enthalpy of solution for ammonium nitrate is found to be $57.3 \mathrm{~kJ} / \mathrm{mol}$. What mass of the $\mathrm{NH}_{4} \mathrm{NO}_{3(s)}$ must have been added?

Specific Heat and Calorimetry $q=\Delta H$ Problems \#3

