1. A calorimeter has a heat capacity of $4.18 \mathrm{~kJ} / \mathrm{g}^{\circ} \mathrm{C}$. Complete combustion of 1.00 g of hydrogen in this calorimeter causes the water temperature in the calorimeter to increase $3.54{ }^{\circ} \mathrm{C}$. If the liquid in the calorimeter has a mass of 9.569 g , calculate the molar enthalpy of combustion for hydrogen from this evidence. ($\mathbf{H}_{\mathrm{c}}=\mathbf{- 2 8 6} \mathrm{kJ} / \mathrm{mol}$)
2. A reference gives the molar enthalpy of combustion for methane as $-803 \mathrm{~kJ} / \mathrm{mol}$. What minimum mass of methane must be burned to warm 4.00 L of water from $22.4^{\circ} \mathrm{C}$ to $87.6^{\circ} \mathrm{C}$, assuming no heat losses? ($\mathrm{m}=\mathbf{2 1 . 8 \mathrm { g } \mathrm { CH }} \mathbf{4}$)
3. Combustion of 3.50 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$, in a calorimeter with a heat capacity of $1.38 \mathrm{~kJ} / \mathrm{g}{ }^{\circ} \mathrm{C}$ causes a temperature increase of an unspecified liquid to rise from $19.88^{\circ} \mathrm{C}$ to $26.18{ }^{\circ} \mathrm{C}$. If the volume of the liquid is 11.0 mL , find the molar enthalpy of combustion for ethanol from this evidence. ($\left.\mathrm{Hc}_{\text {(MEthane) }}=\mathbf{- 1 2 6 0} \mathbf{k J} / \mathrm{mol}\right)$
4. Find the temperature increase expected for 1.00 L of water when it absorbs all of the energy from the combustion of 1.00 g of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}$. The molar enthalpy of combustion for acetylene is $-1.29 \mathrm{MJ} / \mathrm{mol}$. $\left(\boldsymbol{\Delta T}=11.9^{\circ} \mathrm{C}\right)$
5. A calorimeter has a heat capacity of $4.18 \mathrm{~kJ} / \mathrm{g}^{\circ} \mathrm{C}$. Complete combustion of 1.00 g of hydrogen in this calorimeter causes the water temperature in the calorimeter to increase $3.54{ }^{\circ} \mathrm{C}$. If the liquid in the calorimeter has a mass of 9.569 g , calculate the molar enthalpy of combustion for hydrogen from this evidence. ($\mathrm{H}_{\mathrm{c}}=\mathbf{- 2 8 6} \mathrm{kJ} / \mathrm{mol}$)
6. A reference gives the molar enthalpy of combustion for methane as $-803 \mathrm{~kJ} / \mathrm{mol}$. What minimum mass of methane must be burned to warm 4.00 L of water from $22.4^{\circ} \mathrm{C}$ to $87.6^{\circ} \mathrm{C}$, assuming no heat losses? ($m=\mathbf{2 1 . 8 g ~ C H}$)
7. Combustion of 3.50 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$, in a calorimeter with a heat capacity of $1.38 \mathrm{~kJ} / \mathrm{g}{ }^{\circ} \mathrm{C}$ causes a temperature increase of an unspecified liquid to rise from $19.88^{\circ} \mathrm{C}$ to $26.18^{\circ} \mathrm{C}$. If the volume of the liquid is 11.0 mL , find the molar enthalpy of combustion for ethanol from this evidence. ($\left.\mathrm{Hc}_{\text {(MEthane) }}=\mathbf{- 1 2 6 0} \mathbf{~ k J} / \mathrm{mol}\right)$
8. Find the temperature increase expected for 1.00 L of water when it absorbs all of the energy from the combustion of 1.00 g of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}$. The molar enthalpy of combustion for acetylene is $-1.29 \mathrm{MJ} / \mathrm{mol}$. $\left(\boldsymbol{\Delta T}=11.9^{\circ} \mathrm{C}\right.$)
