1. How much heat is required to raise the temperature of 10.0 kg of water from $20.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$? (3.34 $\mathbf{x} 10^{3} \mathrm{~kJ}$)
2. It took 1550 J of energy to heat a piece of aluminum from $21.0^{\circ} \mathrm{C}$ to $266.0^{\circ} \mathrm{C}$. What was the mass of the aluminum? (Begin by rearranging to solve for m.) (7.0 g)
3. The sun shone on a 125 kg block of ice (at a very cold temperature, far below its freezing point) for half an hour. If the ice absorbed $5.03 \times 10^{3} \mathrm{~kJ}$ of energy, how much did the temperature increase? (Begin by rearranging formula to solve for $\Delta \mathrm{t}$.) $\left(19^{\circ} \mathrm{C}\right)$
4. If a piece of copper with a mass of 2.39 g and a temperature of $100.0^{\circ} \mathrm{C}$ is dropped in $10.0 \mathrm{~cm}^{3}$ of water at $14.1^{\circ} \mathrm{C}$, what will be the final temperature of the system? $\left(16.0^{\circ} \mathrm{C}\right)$
5. Joe was welding a piece of iron with a mass of 5650 g , and caused it to reach a temperature of $312^{\circ} \mathrm{C}$. To cool the iron, he placed it in a pail containing 2.00 L of water at $22.5^{\circ} \mathrm{C}$. To what temperature did the iron cool? Would he have been able to handle it with his bare hands? $\left(89.3^{\circ} \mathrm{C}\right)$
6. To cool 250.0 g of aluminum from $225^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$, how much water at $20.0^{\circ} \mathrm{C}$ would be required (in liters)? (2.2 L H2O)
7. A candle (paraffin wax $=\mathrm{C}_{25} \mathrm{H}_{52(\mathrm{~s})}$) was used to heat 285.4 g of water from $12.0^{\circ} \mathrm{C}$ to $29.2^{\circ} \mathrm{C}$. Before the candle was lit, it had a mass of 28.5 g , and after the heating was done, its mass was 2.6 g .
a) How much mass of the candle was used in the reaction?
b) Using your answer from a), find the molar enthalpy of combustion for paraffin wax. ($279 \mathrm{~kJ} / \mathrm{mol}$)
8. Combustion of 2.55 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$, in a calorimeter with a heat capacity of $1.38 \mathrm{~kJ} / \mathrm{g}{ }^{\circ} \mathrm{C}$ causes a temperature increase of an unspecified liquid to rise from $20.19{ }^{\circ} \mathrm{C}$ to $31.18{ }^{\circ} \mathrm{C}$. If the volume of the liquid is 10.0 mL, find the molar enthalpy of combustion for ethanol from this evidence. ($\mathbf{2 7 4 0} \mathbf{~ k J} / \mathbf{m o l}$)
