The Balancing Act | 1 | Answer the following questions as true or false based on your previous knowledge of Chemistry to date. | |---|--| | | Chemistry is an international language Chemical reactions can be represented by word equations only. The amount of matter before the reaction and after the reaction can be different The compounds used to begin the reaction are called reactants After the reaction is complete, products are left. If there is an imbalance between the number of molecules on the left and right side of the equation, you can change the chemical formulas. A balanced chemical equation is when the reactants and products contain equal numbers of atoms of each type. A skeleton equation is a representation of a reaction using words. The first step in balancing an equation is to write out the full equation. We can describe chemical reactions in symbolic form. | | | Balancing Chemical Reactions | | | On a Separate Piece of Paper, Balance the following reactions: | | | 1. $HgO \rightarrow Hg + O_2$ | | | 2. $H_2O \rightarrow H_2 + O_2$ | | (| 3. Al + Pb(NO ₃) ₂ \Rightarrow Al(NO ₃) ₃ + Pb | | | 4. $Cu + AgNO_3 \rightarrow Cu(NO_3)_2 + Ag$ | | | 5. $K + H_2O \rightarrow KOH + H_2$ | | | 6. $MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$ | | | 7. $Cl_2 + LiI \rightarrow LiCl + I_2$ | | | 8. $F_2 + H_2O \rightarrow HF + O_3$ | | | 9. $AgNO_3 + K_2SO_4 \rightarrow Ag_2SO_4 + KNO_3$ | | | 10. $N_1 + HCl \rightarrow N_1Cl + H_2$ | | | 11. $Ca(OH)_2 + HCI \rightarrow CaCl_2 + H_2O$ | | | 12. $Cl_2 + NaBr \rightarrow Br_2 + NaCl$ | | | 13. $Cr_2O_3 \rightarrow Cr + O_2$ | | | 14. Fe + HCl \rightarrow FeCl ₃ + H ₂ | | | 15. $C_3H_6 + O_2 \rightarrow CO_2 + H_2O$ | | | $16. P_4 + F_2 \rightarrow PF_3$ | | | 17. $Ca(NO_3)_2 + KOH \rightarrow Ca(OH)_2 + KNO_3$ | | | 18. KHCO ₃ \rightarrow K ₂ CO ₃ + H ₂ O + CO ₂ | | , | 19. $H_3PO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$ | | | 20. $Ca(NO_3)_2 + Na_3PO_4 \Rightarrow Ca_3(PO_4)_2 + NaNO_3$ | | ~ | 21. $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$ | 22. $Sn + KOH \rightarrow K_2SnO_2 + H_2$ 23. $SiF_4 + H_2O \rightarrow H_2SiF_6 + H_2SiO_3$ ## Blackline Master 6.5c ## Balancing Equations Worksheet ## A. Balance the following equations. 1. Na + $$0_2 \rightarrow Na_2O$$ 2. K + $$Cl_2 \rightarrow KCI$$ 3. Al + $$Br_2 \rightarrow AlBr_3$$ 4. Li + S $$\rightarrow$$ Li₂S 5. Mg + $$N_2 \rightarrow Mg_3N_2$$ 6. Na + $$H_2O \rightarrow NaOH + H_2$$ 7. $$0_3 \rightarrow 0_5$$ 8. $$Al_2O_3 \xrightarrow{\cdot} Al + O_2$$ 9. $$P_4$$ + O_2 \rightarrow P_4O_{10} 10. FeS₂ + $$O_2$$ \rightarrow Fe₂ O_3 + SO_2 B. Write and balance the following word equations. - iron + oxygen → iron(III) oxide - 2. $nitrogen + hydrogen \rightarrow ammonia (NH₃)$ - 3. barium chloride + magnesium sulfate ightarrow barium sulfate + magnesium chloride