Gravity and Uniform Acceleration Worksheet

1. In an acceleration test for a sports car, two markers 0.30 km apart were set up along a road. The car passed the first marker with a velocity of $5.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ and passed the second marker with a velocity of $33.0 \mathrm{~m} / \mathrm{s}$ [E$]$. Calculate the car's average acceleration between the markers.
2. A baseball travelling at $26 \mathrm{~m} / \mathrm{s}$ [fwd] strikes a catcher's mitt and comes to a stop while moving 9.0 cm [fwd] with the mitt. Calculate the average acceleration of the ball as it is stopping.
3. A plane travelling at $52 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$ down a runway begins to accelerate uniformly at $2.8 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$.
a. What is the plane's velocity after 5.0 s ?
b. How far has it travelled during this 5.0 s interval?
4. A skier starting from rest accelerates uniformly downhill at $1.8 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{fwd}]$. How long will it take the skier to reach a point 95 m [fwd] from the starting position?
5. For a certain motorcycle, the magnitude of the braking acceleration is $|4 \vec{g}|$. If the bike is travelling at $32 \mathrm{~m} / \mathrm{s}$ [S],
a. How long does it take to stop?
b. How far does the bike travel during the stopping time?
6. A car travelling along a highway must uniformly reduce its velocity to $12 \mathrm{~m} / \mathrm{s}$ [N] in 3.0 s . If the displacement traveled during that time interval is $58 \mathrm{~m}[\mathrm{~N}]$, what is the car's average acceleration? What is its initial velocity?
7. An airplane accelerates from a velocity of $21 \mathrm{~m} / \mathrm{s}$ at the constant rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ over +535 m . What is its final velocity?
8. The pilot stops the same plane from \#7 in 484 m using a constant acceleration of $-8.0 \mathrm{~m} / \mathrm{s}^{2}$. How fast was the plane moving before braking began?
9. A car is initially sliding backwards down a hill at $-25 \mathrm{~km} / \mathrm{h}$. The driver guns the car. By the time the car's velocity is $+35 \mathrm{~km} / \mathrm{h}$, it is +3.2 m from its starting point. Assuming the car was uniformly accelerating, find the acceleration.
10. A brick falls freely from a high scaffold.
a. What is its velocity after 4.0 s?
b. How far does the brick fall during the first 4.0 s?
11. If you drop a golf ball, how far does it fall in 0.50 s ?
12. A man falls 1.0 m to the floor.
a. How long does the fall take?
b. How fast is he going when he hits the floor?
13. A pitcher throws a baseball straight up with an initial speed of $27 \mathrm{~m} / \mathrm{s}$.
a. How long does it take the ball to reach its highest point?
b. How high does the ball rise above its release point?
