

In this unit, we will:

- ✓ prove properties of angles formed by intersecting lines
- ✓ prove properties of angles in triangles and other polygons
- ✓ use properties to solve geometric problems

GEOMETRIC PROPERTIES

A Review:

Specific names are given to specific shapes.

- POLYGONS Shapes with many sides
 - All shapes with straight sides

triangle	3
quadrilateral	4
pentagon	5
hexagon	6
heptagon	7
octagon	8

Types of QUADRILATERALS

Square

Rectangle

Trapezoid

Rhombus

Parallelogram

TRIANGLES

Triangles can be classified by the <u>length of their</u> <u>sides</u> or by the <u>measurement of their angles</u>.

Length Of Their Sides:

Measurement Of Their Angles:

Acute Angle

Right Angle

Obtuse Angle

PARTS OF ANGLES

To name an angle we use <ABC, <CBA, or simply <B.

GEOMETRIC PROPERTIES

complementary angles

$$A + B = 90$$
 degrees

supplementary angles

A + C = 180 degrees

GEOMETRIC PROPERTIES

$$A = B$$

sum of the angles in a triangle theorem (SATT)

$$a + b + c = 180$$
 degrees

isosceles triangle theorem

Since DE = FE, then $\langle D = \langle F \rangle$

exterior angle theorem

$$A + B = \angle ACD$$

sum of the angles in a quadrilateral

$$a + b + c + d = 360^{\circ}$$