Chemical Calculations

Looking at the formation of ammonia

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

we can look at the moles of each to see the mole ratio of the reaction.

The mole ratio is a conversion factor derived from the coefficients of a balanced chemical equation.

In chemical calculations, mole ratios are used to convert between moles of reactants and moles of products, between moles of reactants, or between moles of products.

Example

How many moles of ammonia are produced when 0.60 mol of nitrogen reacts with hydrogen?

There are 3 possible mole conversions we can look at

$$
\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}_{2}} \quad \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}} \quad \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}
$$

We need to get from moles of nitrogen to moles of ammonia

$$
0.60 \mathrm{molN}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{molN}_{2}}=1.2 \mathrm{~mol} \mathrm{NH}_{3}
$$

> This is an example of a mole-mole calculation

Example 2: Mass-Mass Calculations

Calculate the number of grams of NH_{3} produced by the reaction of 5.40 g of hydrogen with an excess of nitrogen. The balanced equation is

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
5.40 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.02 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}
$$

$$
\begin{aligned}
& 5.40 \mathrm{gHz} \times \frac{1 \mathrm{HH}_{2}}{2.02 \mathrm{H}_{2}} \times \frac{2 \mathrm{NH} \mathrm{H}_{3}}{3 \mathrm{H}} \times \frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{NH}_{3}}=30.36 \mathrm{~g} \mathrm{NH}_{3} \\
& =30.4 \mathrm{~g} \mathrm{NH} 3 \text { (3 sig dig) }
\end{aligned}
$$

In a typical stoichiometric problem,

- The given quantity is first converted to moles.
- Then the mole ratio from the balanced equation is used to calculate the number of moles of the wanted substance.
- Finally, the moles are converted to any other unit of measurement related to the unit mole, as the problem requires.

Example 3 - Calculating Molecules of a Product
How many molecules of oxygen are produced when 29.2 grams of water is decomposed by electrolysis to this balanced equation?

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \stackrel{\text { electricity }}{ } 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)
$$

Example 4 - Volume-Volume Calculations

Nitrogen monoxide and oxygen gas combine to form the brown gas nitrogen dioxide, which contributes to smog. How many liters of nitrogen dioxide are produced when 34 L of oxygen reacts with an excess of nitrogen monoxide? Assume conditions of STP.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Example 5 - Finding the Volume of Gas

Assuming STP, how many milliliters of oxygen are needed to produce $20.4 \mathrm{~mL} \mathrm{SO}_{3}$ according to this balanced equation?

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g)
$$

Try questions 11-24 on pages 360-366

