1. Calculate the $\left[\mathrm{OH}_{(a q)}^{-}\right]$in limes which have a $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ of $1.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
2. Calculate the $\left[\mathrm{H}^{+}\left({ }_{(a q)}\right]\right.$ in lemons which have a $\left[\mathrm{OH}_{(a q)}\right]$ of $2.0 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
3. A sodium hydroxide solution is prepared by dissolving 2.50 g to make 2.00 L of solution. Calculate the hydroxide and hydrogen ion concentrations.
4. A 0.728 g sample of hydrogen chloride gas is dissolved in $2.00 \times 10^{2} \mathrm{~mL}$ of solution. Calculate the hydrogen and hydroxide ion concentrations.
5. A vinegar solution has a hydrogen ion concentration of $1.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Calculate the pH .
6. An ammonia solution has a pOH of 2.92 . What is the concentration of hydroxide ions in the solution?
7. The hydrogen ion concentration in an industrial effluent is $4.40 \times 10^{-3} \mathrm{M}$. Determine the pH , $\mathrm{pOH},\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$.
8. The hydroxide ion concentration in a household cleaning solution is $2.99 \times 10^{-4} \mathrm{M}$. Determine $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]$.
9. Calcium hydroxide is only slightly soluble in water, with a solubility of $6.9 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Determine the $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right], \mathrm{pH}, \mathrm{pOH},\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$.
10. A potassium hydroxide solution was prepared by dissolving 20.0 g KOH to form $5.00 \times 10^{2} \mathrm{~mL}$ of solution. Determine the $\left[\mathrm{H}^{+}\left({ }_{(\mathrm{qq}}\right)\right], \mathrm{pH}, \mathrm{pOH},\left[\mathrm{OH}_{(\mathrm{aq})}{ }^{(}\right]$.
11. Calculate the pOH and pH of a solution made by dissolving 7.50 g of strontium hydroxide to make 500 mL of solution.
12. Complete the following table

Substance	$\left[\mathrm{H}_{(\text {aq })}^{+}\right]$ $(\mathrm{mol} / \mathrm{L})$	pH	$\left[\mathrm{OH}_{\text {(aq) }}^{-}\right]$ $(\mathrm{mol} / \mathrm{L})$	pOH	Acidic, Basic, or Neutral
Milk			3.2×10^{-8}		
Pure Water		7.0			
Blood	4.0×10^{-8}				
Cleaner				3.20	

