The Percent Composition of a Compound

The relative amounts of the elements in a compound are expressed as the percent composition or the percent by mass of each element in the compound.

The percent by mass of an element in a compound is the number of grams of the element divided by the mass in grams of the compound, multiplied by 100\%
$\%$ mass of element $=\frac{\text { mass of element }}{\text { mass of compound }} \times 100 \%$

Example:

When a 13.60 gram sample of a compound containing only magnesium and oxygen is decomposed, 5.40 grams of oxygen is obtained. What is the percent composition of this compound?

Percent Composition from the Chemical Formula

We can also calculate the percent composition of a compound if we only know the chemical formula and the molar mass.

$$
\% \text { mass }=\frac{\text { mass of element in } 1 \mathrm{~mol} \text { compound }}{\text { molar mass of compound }} \times 100 \%
$$

Example:

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, the fuel commonly used in gas grills, is one of the compounds obtained from petroleum. Calculate the percent composition of propane.

Percent Composition as a Conversion Factor

You can use the percent composition to calculate the number of grams of any element

Suppose you have 82.0 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$. How many grams of carbon and hydrogen are present?

In the last question we found that propane is 81.68% carbon and 18.32% hydrogen.

$$
\begin{array}{ll}
82.0 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times & 9 \mathrm{C} \\
82.0 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times & =9 \mathrm{H}
\end{array}
$$

Empirical Formula

The smallest whole number ratio of elements contained in a compound is known as the emperical formula

For example: CO_{2} has a ratio of 1:2 in carbon to hydrogen atoms.

An empirical formula may or may not be the same as a molecular formula. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, has a ratio of $1: 1$ even though there are two of each element.

Example:

A compound is analyzed and found to contain 25.9% nitrogen and 74.1% oxygen.
What is the empirical formula of the compound?

Molecular Formulas

The molecular formula of a compound is either the same as its experimentally determined empirical formula, or it is a simple whole-number multiple of its empirical formula.

For example, ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ both have the same empirical formula - CH

The molar masses of these compounds then are just whole number multiples of their empirical formula.

Example:

Calculate the molecular formula of a compound whose molar mass is $60.12 \mathrm{~g} / \mathrm{mol}$ and empirical formula is $\mathrm{CH}_{4} \mathrm{~N}$

Try questions 32-46 on pages 306-312

3. Percent Composition and Chemical Formulas
