Determining Coefficients of Friction Worksheet \#2

1. Can the coefficient of friction ever be greater than one? Less than one? Explain.
2. In a tug-of-war contest on a firm, horizontal sandy beach, Team A consists of six players with an average mass of 65 kg and Team B consists of five players with an average mass of 84 kg . Team B, pulling with a force of 3.2 kN , dislodges Team A and then applies good physics principles and pulls on Team A with a force of 2.9 kN , just enough to keep Team A moving at a low constant velocity. Determine Team A's coefficient of
a. static friction
b. kinetic friction on sand
3. If the coefficient of kinetic friction is 0.25 , how much horizontal force is needed to pull each of the following masses along a rough desk at a constant speed?
a. 25 kg
b. 15 kg
c. 250 g
4. For each situation given below, draw a FBD of the object and then answer the question. The forces described are acting horizontally; the net vertical force is zero.
a. A butcher pulls on a freshly cleaned side of beef with a force of $2.2 \times 10^{2} \mathrm{~N}$. The frictional resistance between the beef and the countertop is $2.1 \times 10^{2} \mathrm{~N}$. What is the net force exerted on the beef?
b. A net force of 12 N [S] results when a force of 51 N [S] is applied to a box filled with books. What is the frictional resistance on the box?
c. Two students exert a horizontal force on a piano. The frictional resistance on the piano is 92 N [E] and the net force on it is 4.0 N [E]. What is the force on the piano applied by the students? Describe and explain what is happening to the piano.
5. A sled of mass $5.0 \times 10^{1} \mathrm{~kg}$ is pulled along snow-covered, flat ground. The static friction coefficient is 0.30 , and the sliding friction coefficient is 0.10 .
a. What does the sled weigh?
b. What force will be needed to start the sled moving?
c. What force is needed to keep the sled moving at a constant velocity?
d. Once moving, what total force must be applied to the sled to accelerate it $3.0 \mathrm{~m} / \mathrm{s}^{2}$ [fwd]?
6. A force of $4.0 \times 10^{1} \mathrm{~N}$ accelerates a $5.0-\mathrm{kg}$ block at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ along a horizontal surface,
a. How large is the frictional force?
b. What is the coefficient of friction?
7. A $2.00 \times 10^{2}-\mathrm{kg}$ crate is pushed horizontally with a force of $7.00 \times 10^{2} \mathrm{~N}$. If the coefficient of friction is 0.20 , calculate the acceleration of the crate.
