Physics 122 Vectors Activity: Friction and Incline Planes

Testing friction on an incline surface

<u>Purpose</u>: In this activity, you will use 4 different surfaces to predict and calculate which one has the greatest and least amount of friction.

<u>Materials</u>: Cards, rubber pad, wooden pad, carpet, cardboard, protractor with attached string.

Hypothesis: Which surface do you think will have the greatest friction? _____

Which surface do you think will have the least friction? _____

Give a brief explanation as to why you chose each surface.

Trial	Cardboard		Rubber		Wood		Carpet		
	Angle	2 /	μ	Angle	e / µ	Angle	/μ	Angle	e/ µ
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
Average Coefficient of Static Friction (μ)									

Data Table: Fill in the data table below for each surface

<u>Calculations</u>: Determine the *parallel* and *perpendicular* forces acting on each surface. Show work for the **cardboard example only**

Weight of Cards: _____

	Cardboard	Rubber	Wood	Carpet
Parallel Force (N)				
Perpendicular				
Force (N)				

Conclusion:

- Which surface was identified as the one with the greatest friction? The least?
- How did your hypothesis compare to the actual results?
- In what direction is the parallel force in this activity? How do you know?
- Could there have been any human errors that may have affected your results?