DETERMINING THE NUMBER OF X-INTERCEPTS USING a & q

- You can determine the number of x-intercepts or roots if you know the location of the vertex and direction of opening.
- Visualize the general position and shape of the graph based on the values of "a" and "q".

X-INTERCEPTS

x-intercepts are also sometimes called **roots**. And yet one more name for x-intercepts is **zeroes** of a function since the x-value of the intercept makes the function, f(x), equal to 0.

Two x-intercepts

r and s are different values y = a(x - r)(x - s)

One x-intercept

r and s are equal y = a(x - r)(x - r) $y = (x - r)^{2}$

No x-intercepts

equation cannot be written in factored form

Determine the Number of x-Intercepts Using a and q

Determine the number of x-intercepts for each quadratic function.

a)
$$f(x) = 0.8x^2 - 3$$

b)
$$f(x) = 2(x-1)^2$$

a)
$$f(x) = 0.8x^2 - 3$$
 b) $f(x) = 2(x - 1)^2$ c) $f(x) = -3(x + 2)^2 - 1$

Sketch to determine the number of x-intercepts!

Summary

Value of a	Value of q	Visualize the Graph	Number of x-Intercepts
a > 0 the graph opens upward	q < 0 the vertex is below the <i>x</i> -axis	f(x)	crosses the x-axis twice, since it opens upward from a vertex below the x-axis

Value of a	Value of q	Visualize the Graph	Number of x-Intercepts
a > 0 the graph opens upward	q = 0 the vertex is on the <i>x</i> -axis	f(x)	touches the x-axis once, since the vertex is on the x-axis

Value of a	Value of q	Visualize the Graph	Number of x-Intercepts
a < 0 the graph opens downward	q < 0 the vertex is below the x-axis	0 x	does not cross the <i>x</i> -axis, since it opens <i>down</i> from a vertex <i>below</i> the <i>x</i> -axis

More Practice

Determine the number of x-intercepts for each quadratic function without graphing.

a)
$$f(x) = 0.5x^2 - 7$$

b)
$$f(x) = -2(x+1)^2$$

a)
$$f(x) = 0.5x^2 - 7$$
 b) $f(x) = -2(x+1)^2$ c) $f(x) = -\frac{1}{6}(x-5)^2 - 11$

Assignment:

Page 158
Questions 11 & 12