SOLVING QUADRATICS by

Completing the Square

*When equations aren't easily factorable, we may need to complete the square to solve them.

Ex.1: Solve by completing the Square:

$$y = x^{2} - 6x + 4$$
 $0 = (x^{2} - 6x + 9) + 4 - 9$
 $0 = (x-3)^{2} - 5$
 $5 = (x-3)^{2}$
 $\pm \sqrt{5} = x-3$
EXACT ROOTS AFFROXMATE ROOTS

$$3 \pm \sqrt{5} = x$$
 So $x = 3 + \sqrt{5}$ and $3 - \sqrt{5}$ (5.24 and 0.76)

Solving Quadratics by Comp the Square

Ex.2:
$$y = 2x^2 - 3x - 1$$

$$0 = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - 1 - \frac{18}{16}$$

$$0 = 2(x - \frac{3}{4})^2 - \frac{34}{16}$$

$$\frac{17}{8} = 2(x - \frac{3}{4})^2$$

$$\frac{17}{16} = (x - \frac{3}{4})^2$$

$$\sqrt{\frac{17}{16}} = x - \frac{3}{4}$$

$$\sqrt{\frac{17}{16}} = \times -\frac{3}{4}$$

$$\pm \frac{\sqrt{17}}{4} = \times -\frac{3}{4}$$

$$\frac{3}{4} \pm \frac{\sqrt{17}}{4} = \times$$

$$\frac{3\pm\sqrt{17}}{4} = \times$$

$$\frac{3\pm\sqrt{17}}{4} = \times$$
 So, $x = 1.78$ and -0.28

Ex.4:
$$(x + 1)^2 = 6$$

 $x + 1 = \pm \sqrt{6}$
 $x = -1 \pm \sqrt{6}$. So, the x-intercepts are 1.45 and -3.45

Ex.5: $y = 3x^2 - 6x - 1$ $0 = 3(x^2 - 2x + 1) - 1 - 3$ $0 = 3(x - 1)^2 - 4$ $4 = 3(x - 1)^2$ $\frac{4}{3} = (\times - 1)^2$

$$\sqrt{\frac{4}{3}} = \times -1$$

$$\pm \frac{2}{\sqrt{3}} = \times -1$$

 $1 \pm \frac{2}{\sqrt{3}} = x$. We cannot leave a radical as a denominator!

$$1 \pm \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \times ...$$
 So, rationalize by multiplying by $\frac{\sqrt{3}}{\sqrt{3}}$ or 1.

$$1 \pm \frac{2\sqrt{3}}{3} = \times \quad \text{So.}$$

 $1 \pm \frac{2\sqrt{3}}{3} = \times$ So, the x ints are 2.16 and - 0.16

Solving Quadratics by Comp the Square

Ex. 7: A wide-screen t.v. has a diagonal measurement of 42 inches. The width of the screen is 16 inches more than the height. Determine the dimensions of the screen to the nearest tenth of an inch.

Solving Quadratics by Comp the Square

Draw a diagram. Let h represent the height of the screen. Then, h+16 represents the width of the screen.

Use the Pythagorean Theorem.

$$h^2 + (h + 16)^2 = 42^2$$

 $h^2 + (h^2 + 32h + 256) = 1764$
 $2h^2 + 32h + 256 = 1764$
 $2h^2 + 32h = 1508$
 $h^2 + 16h = 754$
 $h^2 + 16h + 64 = 754 + 64$
 $(h + 8)^2 = 818$
 $h + 8 = \pm \sqrt{818}$
 $h = -8 \pm \sqrt{818}$

Since the height of the screen cannot be negative, h = -36.6 is an **extraneous root**.

Thus, the height of the screen is approximately 20.6 in., and the width of the screen is approximately 20.6 + 16 or 36.6 in..

Hence, the dimensions of a 42-in. television are approximately 20.6 in. by 36.6 in..

Check:

 $20.6^2 + 36.6^2$ is 1763.92, and $\sqrt{1763.92}$ is approximately 42, the diagonal of the television, in inches.

Ex. 8: Solve $x^2 - 21 = -10x$ by completing the square. Express your answers to the nearest tenth.

Ex. 9: Determine the roots of $-2x^2 - 3x + 7 = 0$ to the nearest hundredth. Then, using technology, verify your answers.

